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Development of Standing-Wave Labyrinthine Patterns∗

Arik Yochelis†, Aric Hagberg‡, Ehud Meron§, Anna L. Lin¶, and Harry L. Swinney¶

Abstract. Experiments on a quasi-two-dimensional Belousov–Zhabotinsky (BZ) reaction-diffusion system, pe-
riodically forced at approximately twice its natural frequency, exhibit resonant labyrinthine patterns
that develop through two distinct mechanisms. In both cases, large amplitude labyrinthine patterns
form that consist of interpenetrating fingers of frequency-locked regions differing in phase by π.
Analysis of a forced complex Ginzburg–Landau equation captures both mechanisms observed for
the formation of the labyrinths in the BZ experiments: a transverse instability of front structures
and a nucleation of stripes from unlocked oscillations. The labyrinths are found in the experiments
and in the model at a similar location in the forcing amplitude and frequency parameter plane.
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1. Introduction. Labyrinthine patterns occur in a variety of equilibrium and nonequi-
librium systems. Competition between two interacting phases in diblock copolymers [21],
ferrofluids [25], and Langmuir films [25] results in labyrinthine domain patterns of the two
phases at equilibrium. Labyrinths made of superconducting and normal phases are found in
thin films of type-I superconductors [13]. Nonequilibrium labyrinthine patterns are observed
in chemical reaction-diffusion systems with a Turing instability [22] and in bistable reaction-
diffusion systems [14, 17]. Although periodically forced oscillatory systems have been studied
in the context of traveling waves and spiral waves [2, 1, 26, 8], only a few studies have focused
on labyrinthine standing-wave patterns. Labyrinthine patterns have been found in numeri-
cal simulations of the periodically forced Brusselator reaction-diffusion equations [18] and in
numerical solutions of the normal form equation for the oscillation amplitude [1, 23].

Experiments on the periodically forced photosensitive Belousov–Zhabotinsky (BZ) re-
action produce nonequilibrium labyrinthine patterns when the system is forced with time-
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periodic pulses of light that are approximately twice the system’s natural oscillation fre-
quency [24, 18]. In this case, the two phases correspond to two phases of oscillation, each
locked to the time-periodic forcing and shifted by π with respect to one another. We observe
that the standing-wave labyrinthine patterns form in two distinct ways: from a transverse
instability of planar fronts connecting the two phase-locked states or by nucleating stripes
from unlocked oscillating domains. Even though the mechanisms are different, the resulting
patterns in both cases are large amplitude labyrinths.

In this paper, we explain the experimental observations using a normal form equation for
periodically forced oscillatory systems. We demonstrate the two mechanisms for labyrinthine
pattern formation and give criteria for the parameter regions where they act. Since the
mechanisms of labyrinthine pattern formation are found in a normal form equation, these
mechanisms should also be observed in other periodically forced oscillatory systems such as
electro-convection [15].

2. Experimental results. We create chemical labyrinths in a porous membrane (0.4 mm
thick, 22 mm diameter) fed by two reservoirs. Each reservoir contains a subset of the chemical
reactants for the oscillatory photosensitive (ruthenium catalyzed) BZ reaction [18, 24], and
the two reservoirs are in contact with opposite faces of the porous membrane. We force
the reaction externally with spatially homogeneous time-periodic square waves of light. The
patterns form in the membrane as variations in the concentration of the chemical catalyst
Ru(III). The unforced pattern is a rotating spiral wave of Ru(III) concentration. Parametric
forcing with light modulated in intensity at a frequency that is approximately twice that of
the chemical oscillation frequency results in chemical patterns that oscillate once every two
forcing cycles. These patterns, which we call 2:1 resonant patterns, consist of synchronous
domains that oscillate with a relative phase difference of π.

Photobleaching experiments [19] reveal that the membrane supports spatially uniform os-
cillations over a range of chemical concentrations. We conduct our experiments within this
range; thus our experimental conditions are far from the Hopf bifurcation. The labyrinthine
patterns we describe here are 2:1 resonant with the natural frequency (the spatially homoge-
neous oscillation frequency), not the oscillation frequency of the spiral pattern [18].

Different resonant patterns are observed, depending on the forcing frequency ωf and the
forcing strength γ [18]. The region of 2:1 resonant dynamics forms a tongue in the ωf −
γ parameter space [12]. For most parameter values in the tongue, the patterns consist of
irregularly shaped standing-wave domains differing in phase by π. Near the bottom of the
tongue, there are rotating phase-locked spiral waves, and, on one side of the tongue, standing-
wave labyrinthine patterns form [18], as shown in Figure 1. Outside the range of 2:1 resonant
dynamics, patterns are either unlocked or locked at a different resonance.

A useful way to characterize the spatio-temporal patterns is in terms of the complex
Fourier amplitude a(x, y) of a particular mode in the time series of each pixel (x, y) in the
pattern [18]. We look at a(x, y) for the ωf/2 mode, the primary response mode of the pattern.
For each pixel (x, y) in the labyrinthine pattern of Figure 1, a(x, y) is plotted as a black dot
in the Re-Im plane shown in Figure 2(a). The points located at the ends of the “S”-shaped
curve correspond to pixels in one of the two phase-locked domains. The other points are from
the interfaces between domains. The ends of the “S”-shaped curve are π out of phase, which
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Labyrinthine pattern observed in the BZ reaction (pattern sampled every 2
seconds) [movie] [27].
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Figure 1. Resonant labyrinthine pattern in the 2:1 periodically forced BZ reaction. (top) The two images
show the spatial Ru(III) concentration pattern in a 9 mm region of the chemical reactor. Yellow represents
regions of high Ru(III) concentration, and blue represents regions of low concentration. The images are at two
different times separated by one forcing period (21 s). (bottom) A time series from two locations in the top
pattern (marked with “x” and “◦”) shows that the pattern is formed of regions of two different phases separated
by π. The chemical conditions are given in Figure 3.

shows that the phase-shift between the yellow and the blue domains pictured in Figure 1 is
π. The distribution of points in Figure 2(a) as a function of phase angle θ = arg(a(x, y)) is
shown in Figure 2(b). The histogram shows that most of the pattern is in one of the two
phase-locked states, θ = 0 and θ = π, which correspond to the yellow and blue regions in
Figure 1. From this representation of the data, we clearly see that the observed labyrinths
are large amplitude patterns comprised of two phase-locked, π-shifted domains, as opposed to
small amplitude modulations on one or both of the two phases.

The development of labyrinthine patterns by the two mechanisms is shown in Figure 3.
A labyrinth can grow from a transverse instability of a front that separates two phase-locked
domains, as shown in Figure 3(a). A labyrinth pattern can also develop, stripe by stripe, from
an unlocked oscillatory state, as shown in Figure 3(b). The resulting labyrinthine pattern in
Figure 3(b) is similar to the labyrinth shown in Figure 3(a); both patterns consist of standing-
wave domains oscillating with a relative phase-shift of π.

http://epubs.siam.org/sam-bin/getfile/SIADS/articles/39711_01.mpg
http://epubs.siam.org/sam-bin/getfile/SIADS/articles/39711_01.mpg
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Figure 2. (a) The complex Fourier amplitude a(x, y) of the ωf/2 mode corresponding to the labyrinthine
pattern shown in Figure 1, plotted in the Re-Im phase plane. (b) A histogram P (θ) of the phase angle θ = arg(a).
Most of the pattern is locked at one of two phase angles, θ = 0, π.

3. Theoretical analysis. To study the mechanisms by which these chemical labyrinths
form, we model the oscillating BZ chemical reaction as an extended system with a Hopf bifur-
cation to uniform oscillations. Let u be a vector field of chemical concentrations responding at
ωf/2 ≈ ω0, where ω0 is the frequency of the unforced system and ωf is the forcing frequency.
Near a supercritical Hopf bifurcation, the field can be written as

u = u0Ae
iωf t/2 + complex conjugate (c.c.) + · · · ,(3.1)

where u0 is a constant, A is a complex amplitude, and the ellipses denote higher order terms.
The amplitude of oscillation A(x, y, τ) is slowly varying in space and time and is described by
the complex Ginzburg–Landau equation [11, 1, 6, 7]

Aτ = (µ + iν)A + (1 + iα)∇2A− (1 + iβ)|A|2A + γA∗ .(3.2)

The equation has been scaled to its reduced form, where µ is the distance from the Hopf
bifurcation, ν is the detuning (the deviation of ωf from 2ω0), α is a dispersion parameter, and
γ is the forcing amplitude. The term A∗ is the complex conjugate of A and appears from the
addition of 2:1 periodic forcing [11]. To simplify the following discussion, we set β = 0.

When µ > 0, the spatially uniform solution A = 0 is unstable. In the unforced system
(γ = 0), (3.2) has a continuous family of uniformly oscillating solutions

A =
√
µeiντ+iφ0 ,(3.3)

where φ0 is an arbitrary constant phase. Equation (3.2) also has plane wave solutions, but we
do not consider them here. The existence of a continuous family of solutions when γ = 0 is
a consequence of the phase-shift invariance of (3.2), A → Aexp(iφ0), which follows from the
time translation symmetry of the unforced oscillatory system. The forcing term γA∗ restricts
the phase-shift invariance to π phase-shifts. At γ = |ν|, two stable uniform phase-locked
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Labyrinthine pattern formation by transverse front instability (strobed at the pattern
frequency) [movie] [27].
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Labyrinthine pattern formation by nucleation of stripes (strobed at the pattern
frequency) [movie] [27].

Figure 3. Formation of labyrinthine patterns through (top) a transverse front instability and (bottom) a
nucleation of stripes. The patterns are from a region of the BZ reactor, strobed at half the forcing frequency.
Blue (yellow) represents regions of low (high) Ru(III) concentration. (a) γ = 600 W/m2, ωf = 0.273 rad/s.
Reservoir I: 0.22 M malonic acid, 0.046 M KBr03, 0.2 M KBr, and 0.8 M H2SO4; reservoir II: 1.0 mM
Ru(2, 2′ − bipyridine)3 + 2, 0.8 M H2SO4, and 0.184 M KBrO3. The flow rates through each reservoir are 20
ml/h and 5 ml/h, respectively. The reservoir volumes are each 10 ml. (b) γ = 228 W/m2, ωf = 0.300 rad/s.
Reservoir I: 0.22 M malonic acid, 0.2 M NaBr, 0.264 M KBrO3, 0.8 M H2SO4; reservoir II: 0.184 M KBrO3,
1× 10−3 M Tris(2, 2’-bipyridyl)dichlororuthenium(II)hexahydrate, 0.8 M H2SO4. The volume of each reservoir
was 8.3 ml. The flow rate through reservoir I was 20 ml/h; that through reservoir II was 5 ml/h.

solutions are formed in a pair of saddle-node bifurcations on a circle of amplitude |A|. These
solutions describe oscillations at precisely half the forcing frequency, ωf/2, even though for
ν �= 0 the oscillation frequency of the unforced system differs from ωf/2. The phases of the
two solutions differ by π.

To see how these solutions appear, we consider spatially uniform solutions of (3.2) and
write the complex amplitude in a polar form, A = |A| exp (iφ). Using this form in (3.2), we
find

φτ = ν − γ sin(2φ) .(3.4)

In order for (3.1) to describe resonant dynamics, we must look for stationary solutions of (3.4)
(so that u oscillates at ωf/2). Stationary solutions of this equation exist for γ ≥ |ν|:

φ−
S =

1

2
arcsin

(
ν

γ

)
, φ+

S = φ−
S + π ,(3.5)

φ−
U =

π

2
− 1

2
arcsin

(
ν

γ

)
, φ+

U = φ−
U + π ,

where the subscripts S and U refer to stable and unstable solutions, respectively. At γ = |ν|,

http://epubs.siam.org/sam-bin/getfile/SIADS/articles/39711_02.mpg
http://epubs.siam.org/sam-bin/getfile/SIADS/articles/39711_02.mpg
http://epubs.siam.org/sam-bin/getfile/SIADS/articles/39711_03.mpg
http://epubs.siam.org/sam-bin/getfile/SIADS/articles/39711_03.mpg
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the two pairs of solutions, φ−
S , φ

−
U and φ+

S , φ
+
U are born in saddle-node bifurcations, as shown

in Figure 4(a). The condition γ > |ν| defines the 2:1 resonance tongue, where the system’s
frequency is locked to one half of the forcing frequency. The resonance tongue in the ν-γ plane
is shown in Figure 4(b).
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Figure 4. (a) Bifurcation diagrams showing the formation of the four stationary phase solutions in (3.5)
for fixed detuning (ν = 2) and varying forcing strength γ. The solid (dashed) curves represent stable (unstable)
solutions. (b) The existence range of the phase solutions in (a), γ > |ν|, defines the resonance tongue in the
ν-γ plane (shaded region) inside which the original system responds at half the forcing frequency.

Inside the tongue, front structures form between the two phases φ−
S and φ+

S . At low forcing
γ, the fronts travel, and the domains organize into two-phase spiral waves [1, 9]. As the forcing
is increased, the system goes through a nonequilibrium Ising–Bloch (NIB) bifurcation [2, 8].
For ν = α = 0, the NIB bifurcation point is at γ = µ/3. A numerically computed NIB
bifurcation boundary for nonzero ν and α values is shown in Figure 5(a). Above the NIB
bifurcation, only stationary Ising fronts exist. In the following, we confine ourselves to the
Ising regime well beyond the NIB bifurcation.

When α �= 0, there is a range of parameters in the ν − γ parameter plane where the
Ising fronts are unstable to transverse perturbations. The boundary of this linear transverse
instability can be computed numerically and is shown as the line γT in Figure 5(b).

When γ > γT , the fronts are stable, and domains of the two phases persist for long periods.
For ν < γ < γT , stationary fronts are unstable. Perturbations along the front grow into fingers,
which tip, split, and form labyrinthine patterns, as shown in Figure 6(a). The amplitude of
the labyrinth approaches that of the uniform phase-locked states |A| ∼ (µ+

√
γ2 − ν2)1/2 and

is large because of the large distance µ from the Hopf bifurcation. Note the similarity to the
experimental labyrinth formation shown in Figure 3(a).

Outside the tongue (γ < ν), uniform phase-locked solutions do not exist, but resonant
labyrinthine patterns still persist [23]. The labyrinthine patterns form in a range γN < γ < ν
outside the tongue boundary and, similar to the labyrinths inside the tongue, are characterized
by large amplitudes. This observation can be explained by a coupling of a finite-wavenumber
(Turing) mode to a zero-wavenumber mode [5, 20, 3]. In the present case, the zero-wavenumber
mode has uniform oscillations. In the following, we derive equations for the amplitudes of these
modes and use them to obtain a criterion for the boundary γN .

Consider the dispersion relation associated with perturbations, A ∼ exp(στ − ikx), of the
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Figure 5. (a) The NIB bifurcation boundary (dashed curve) inside the resonance tongue, obtained by
numerical integration of (3.2). Below the boundary, the fronts that connect the two stable phase-locked states, φ−

S

and φ+
S , are traveling Bloch fronts. Above the boundary, the fronts are stationary Ising fronts. (b) A closeup of

the rectangular region indicated in (a) showing the regions where a labyrinthine pattern forms. For ν < γ < γT ,
a labyrinth forms by a transverse front instability, while, for γN < γ < ν, it forms by stripe nucleation from
the unlocked oscillating state. Outside these regions, the dominant pattern is unlocked oscillations (γ < γN ) or
irregularly shaped standing-wave domains with nearly stationary interfaces (γ > γT ). The boundaries γN and
γT are computed from direct numerical solution of (3.2). Parameters: µ = 1, β = 0, α = 0.5.

A = 0 state
σ(k) = µ− k2 +

√
γ2 − (ν − αk2)2.(3.6)

At the codimension 2 point, µ = 0, γ = γc, where

γc =
ν√

1 + α2
,

two modes become marginally stable in a Turing–Hopf bifurcation [16, 4]. That is, the growth
rates, shown in Figure 7, are zero for both a zero-k mode describing uniform oscillations,
k = 0, ω = ω0, and a finite-k mode describing a stationary pattern, k = kc, ω = 0, where
ω = Im(σ) and

k2
c =

να

1 + α2
,

ω0 =
να√

1 + α2
.

To study the coupling of the two modes, we assume |µ| ∼ |d| � 1, where d := γ − γc,
and we consider (3.2) in one space dimension. We then express A in terms of its real and
imaginary parts, A = U + iV , and expand(

U
V

)
=

√
µ

(
U0

V0

)
+ µ

(
U1

V1

)
+ µ3/2

(
U2

V2

)
+ · · · ,(3.7)

where the ellipses denote higher order contributions and(
U0

V0

)
= e0B0 (X,T ) eiω0τ + ekBk (X,T ) eikcx + c.c.(3.8)
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Labyrinthine pattern formation by transverse front instability: [movie] [27].
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Labyrinthine pattern formation by stripe nucleation: [movie] [27].

Figure 6. Formation of labyrinthine patterns in (3.2). Blue and yellow regions are different phases
separated by π. (top) When ν < γ < γT (γ = 2.02), the interface between the phase-locked domains is
transversely unstable, and small perturbations grow and finger. (bottom) Outside the tongue, when γN < γ < ν
(γ = 1.98), the pattern forms by nucleating stripes from the unlocked oscillating state. The stripes are unstable
to the zigzag instability. Other parameters: µ = 1, ν = 2.0, α = 0.5.

Here e0 and ek are the eigenvectors corresponding to the eigenvalues σ(0) and σ(kc), respec-
tively.

The amplitudes B0 and Bk in (3.8) describe weak spatio-temporal modulations of the
(relatively) fast oscillations associated with the zero-k mode and of the strong spatial variations
associated with the finite-k mode. The weak dependence is expressed by the introduction of
the slow variables T = µτ, X =

√
µx.

Inserting the expansion (3.7) into (3.2), solving the linear equations at order µ, and eval-
uating the solvability condition at order µ3/2, we find the amplitude equations

∂TB0 = (µ− iζ)B0 − 4 |B0|2 B0 − (a− ib) |Bk|2 B0 + (1 + iρ)∂2
XB0 ,

∂TBk = ηBk − c1 |Bk|2 Bk − 8 |B0|2 Bk + c2∂
2
XBk ,(3.9)

with the coefficients

ζ = d/α (d = γ − γc) ,

η = µ + ζρ ,

ρ =
√

1 + α2 ,

a = 8ρ(ρ + α) ,

b = 4(ρ + α) ,

http://epubs.siam.org/sam-bin/getfile/SIADS/articles/39711_04.mpg
http://epubs.siam.org/sam-bin/getfile/SIADS/articles/39711_04.mpg
http://epubs.siam.org/sam-bin/getfile/SIADS/articles/39711_05.mpg
http://epubs.siam.org/sam-bin/getfile/SIADS/articles/39711_05.mpg
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Figure 7. The growth rate Re(σ) for perturbations of the A = 0 solution at the codimension 2 point:
µ = 0, γ = γc. Two modes become marginal at this point: a zero-k (Hopf) mode and a finite-k (Turing) mode.
Parameters: µ = 0, ν = 2.0, α = 0.5, γ = γc ≈ 1.8.

c1 = 3a/4 ,

c2 = 2ρ2 .

More details about the derivation of (3.9) will be presented elsewhere.
Equations (3.9) have two families of pure-mode uniform solutions,

B0 =
1

2

√
µe−iζT+iψ1 , Bk = 0 ,(3.10)

representing uniform oscillations, and

B0 = 0 , Bk =
√
η/c1e

iψ2 ,(3.11)

representing stationary periodic patterns, where ψ1 and ψ2 are arbitrary constants. Outside
and close enough to the tongue boundary (γ = ν), both families of solutions are linearly
stable. The family of solutions representing stationary patterns, however, loses stability as γ
is decreased past

γS = γc − µα

4
√

1 + α2
=

ν − µα/4√
1 + α2

.(3.12)

Figure 8 shows the boundary γ = γS as computed from (3.12) and compared with results from
the direct numerical solution of (3.2) in one space dimension. The agreement is good despite
the relatively large value of µ.

The amplitude equations (3.9) also have a mixed-mode family of uniform solutions (B0 �= 0,
Bk �= 0), but these solutions are unstable.

The existence boundary of resonant stripes γ = γS is well below the boundary γ = γN ,
where stripes are observed to nucleate from the unlocked oscillation state. This observation
can be understood by considering front solutions of (3.9) which are biasymptotic to the two
states (0, Bk) and (B0, 0) as x → ±∞. Numerical studies of these equations in the range
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Figure 8. The boundaries γS of stationary stripe patterns and γN of stripe nucleation outside of the
resonance tongue. The line γ = γS was computed using (3.12), and the solid circles represent the numerical
solution of the model equation (3.2). The line γ = γN was computed by direct numerical solution of (3.9).
Stationary stripes are stable between the tongue boundary γ = ν and γS but nucleate from unlocked oscillations
only between γ = ν and γN . When γ < γS, the stripes are unstable to uniform oscillations. The parameter
values are the same as in Figure 5.

γS < γ < ν show the existence of a zero front-velocity line. We identify this line with the
boundary γ = γN . For γ > γN , the stationary stripe state, (0, Bk), invades the uniform
oscillation state, (B0, 0), and in this sense is dominant. In the context of (3.2), this invasion
takes the form of stripe nucleation, as Figure 6(b) shows. The stripes nucleate stripe by stripe
at the boundary of the growing stationary pattern domain. The stripes are also unstable to
transverse perturbations (zigzag instability). Note the similarity to the experimental labyrinth
formation shown in Figure 3(b).

The analysis of the amplitude equations (3.9) also provides the amplitude of the stationary
stripes. The amplitude of the stripes is given by |Bk| =

√
η/c1 (see (3.11)). Far from the

Hopf bifurcation where µ ∼ O(1), |Bk| can be of order unity even at γ = γN . This explains
the large amplitude values of the stationary stripe patterns in the range γN < γ < ν.

4. Conclusions. Both the experiments and the complex Ginzburg–Landau equation pro-
duce nonequilibrium labyrinthine patterns through two different mechanisms: a transverse
instability of fronts between locked states and a nucleation of stripes from an unlocked os-
cillating state. Unlike previous studies of phase-locked labyrinthine patterns, the labyrinths
are not small amplitude patterns modulating one of the phase-locked states [1]. Resonant
labyrinths persist even outside the 2:1 tongue of uniform phase-locked states in the complex
Ginzburg–Landau model, indicating that the boundary for resonant patterns in extended os-
cillating systems need not coincide with that of a single forced oscillator. The large amplitude
of the labyrinths both inside and outside the tongue boundary is a consequence of the large
distance of the system from the Hopf bifurcation.

The labyrinthine patterns are found on only one side of the 2:1 resonance tongue both in
the experiments and in the forced complex Ginzburg–Landau equation. In the experiments,
they are found on the side of the tongue closest to the 3:1 resonance tongue. In (3.2), the side
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of the tongue is determined by the sign of the parameter α.

Similar labyrinthine patterns have been observed in numerical solutions of the forced Brus-
selator reaction-diffusion system [18] but without a description of the underlying mechanism.
Those results show similar features, such as the labyrinths forming in a region on only one
side of the resonance tongue. Since the complex Ginzburg–Landau equation we study is a
generic model, we expect to find the same mechanisms for labyrinthine pattern formation in
other 2:1 resonant oscillatory systems.

Quantitative comparison between the experiment and the model is difficult because the
chemical kinetics and diffusion coefficients are not well known. The parameter values in
a complex Ginzburg–Landau model depend on these quantities. The two mechanisms of
labyrinthine pattern formation are also expected to be found in liquid crystal systems with
dynamics described by (3.2) [10, 9].
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